性暴力欧美猛交在线播放_污视频免费看网站_夜夜澡人摸人人添人人看_日本亚洲中文字幕不卡_av污在线观看_在线成人A毛片免费播放

Welcome new and old customers to visit!!!

Phone:0592-7231766

Collect  |  Contact  |  中文
News
Industry News
Current Location: Hpme > News > Industry News

What are the methods to control the electric stress at the end of extruded cable?

Electrical stress control is an important part in the design of medium and high voltage cable accessories. The electric stress control is to control the electric field distribution and electric field strength inside the cable accessories, that is to say, to take appropriate measures to make the electric field distribution and electric field strength in the best state, so as to improve the reliability and service life of the cable accessories.


For the cable terminal, the electric field distortion is the most serious, the biggest impact on the terminal operation reliability is the external shield cut-off of the cable, and the impact of the electric field distortion of the intermediate joint of the cable, in addition to the external shield cut-off of the cable, there are the insulation cut-off of the cable end. In order to improve the electrical stress distribution at the cut-off point of the cable insulation shield, the

a. Geometry method - stress cone is used to relieve stress concentration in electric field

b. Parameter control method -- B1. Using high dielectric constant material to relieve the stress concentration in electric field

B 2. Using non-linear resistance material to relieve the stress concentration of electric field

c. Comprehensive control method -- using capacitance cone to relieve electric field stress concentration


1.1 stress cone: the design of stress cone is a common method, and the most effective method from the electrical point of view. The stress cone extends the cut-off part of the insulation shield to form a horn like zero potential, improves the electric field distribution of the insulation shield, reduces the possibility of corona generation, reduces the damage of the insulation, and ensures the operation life of the cable.


The cable accessories designed with stress cone include wrapped terminal, prefabricated terminal and cold shrinkable terminal.


1.2 materials with high dielectric constant:


1.2.1 use of stress control layer - at the end of last century, the so-called stress control layer for medium voltage cable accessories was developed abroad. The principle is to composite the materials with appropriate electrical parameters at the end of the cable


In order to change the potential distribution of the insulation surface, the purpose of improving the electric field is achieved.


The method of applying the stress control layer is based on the analysis of various factors affecting the potential distribution. The cable insulation itself has volume resistance (RV) and volume capacitance (CV), and the insulation surface has surface resistance (RS) and surface capacitance (CS), which are all distributed parameters. In order to make the potential distribution at the end of the shield tend to be uniform, these parameters must be changed. Because there must be a section of insulation left after the shield at the end of the cable is cut off, and the volume resistance (RV) and volume capacitance (CV) of this section of insulation cannot be changed, only the surface resistance (RS) and surface capacitance (CS) can be changed. If the insulation surface resistance (RS) at the end of the cable is reduced, the potential will also be reduced, which is effective, but because the reduction of the surface resistance (RS) will increase the surface leakage current, resulting in the heating of the insulation surface of the cable, which is unfavorable. Another method is to increase the insulation surface capacitance (CS) at the shield end, so as to reduce the capacitive reactance of this part, and also make the potential drop. The reduction of capacitive reactance will increase the surface capacitance current, but will not cause heat. Because the capacitance is proportional to the dielectric constant of the material, that is to say, to increase the surface capacitance, a layer of high dielectric constant material can be added to the insulation surface at the shield end of the cable 。 At present, the products of stress control materials have heat shrinkable stress tube, cold shrinkable stress tube, stress control band and so on. Generally, the dielectric constant of these stress control materials is more than 20, and the volume resistivity is 1081012 Ω. Cm. The application of stress control materials should consider both the technical requirements of stress control and volume resistance. Although in theory, the higher the dielectric constant is, the better, but the capacitance current caused by the too high dielectric constant will also generate heat, which will promote the stress control material aging. At the same time, as a kind of polymer polyphase structure composite material, the dielectric constant and volume resistivity are a pair of contradictions in the coordination of the material itself. The higher the dielectric constant is, the corresponding volume resistivity will be reduced. And the stability of the electrical parameters of the material is often affected by various factors. When the material operates in the long-term electric field, the temperature and external environment will change Aging the stress control material, the volume resistivity of the aged stress control material will change greatly, the volume resistivity will become larger, the stress control material will become the insulating material, which will not improve the electric field, the volume resistivity will become smaller, the stress control material will become the conductive material, and the cable will fail. This is the reason why the heat shrinkable cable accessories used to improve the electric field by using stress control materials can only be used for medium voltage power cable lines and heat shrinkable cable accessories, and the cable accessories using cold shrinkable stress tube and stress control belt also have similar problems.


1.2.2 the use of non-linear resistance material - non linear resistance material (FSD) is also a new type of material developed recently. It uses the non-linear relationship between the material's own resistivity and the applied electric field to solve the problem of concentrated distribution of electric field at the cut-off of cable insulation shield. The nonlinear resistance material has the characteristic of changing resistance value to different voltage. When the voltage is very low, it shows a larger resistance performance; when the voltage is very high, it shows a smaller resistance performance. The use of non-linear resistance material can produce short stress control tube, so as to solve the problem that the cable with high dielectric constant stress control tube terminal can not be applied to small switchgear. The non-linear resistance material can also be made into a non-linear resistance piece (stress control piece), which is directly wrapped on the cut-off part of the cable insulation shield to alleviate the problem of stress concentration at this point.


Why do high voltage single core XLPE insulated power cables adopt special grounding method?


Electric power safety regulations stipulate that all non electrified metal shells of electrical equipment shall be grounded, so the aluminum package or metal shielding layer of the cable shall be grounded. Generally, cables with 35kV and below voltage level are grounded at both ends. This is because most of these cables are three core cables. In normal operation, the total current flowing through the three cores is zero, and there is basically no magnetic chain outside the aluminum clad or metal shielding layer. In this way, there is basically no induced voltage at both ends of the aluminum clad or metal shielding layer, so there will be no induction after both ends are grounded The current flows through an aluminum clad or metal shield. But when the voltage is more than 35kV, most of them use single core cable. The relationship between the core of single core cable and metal shield can be regarded as the primary winding of a transformer. When a single core cable core passes through the current, there will be an aluminum package or a metal shielding layer of the flux line cross chain, which will cause induced voltage at both ends of it. The magnitude of the induced voltage is directly proportional to the length of the cable line and the current flowing through the conductor. When the cable is very long, the induced voltage on the sheath can be superposed to the extent that it endangers the personal safety. When the line has a short-circuit fault, suffers an operating overvoltage or lightning impulse, a very high induced voltage will be formed on the shield, or even may break through the sheath insulation. At this time, if the two ends of the aluminum clad or metal shielding layer are still interconnected and grounded, there will be a large circulation in the aluminum clad or metal shielding layer, the value of which can reach 50% - 95% of the core current, forming loss and heating the aluminum clad or metal shielding layer, which not only wastes a lot of electric energy, but also reduces the current carrying capacity of the cable and accelerates the aging of the cable insulation. Therefore, the single core cable should not be two Terminal ground. [in some cases (such as short cable or light load operation), the three-phase interconnection and grounding at both ends of aluminum clad or metal shielding layer can be carried out. ] However, when one end of the aluminum clad or metal shielding layer is ungrounded, the following problems arise: when the lightning current or over-voltage wave flows along the core, the ungrounded end of the aluminum clad or metal shielding layer of the cable will have a very high impulse voltage; when the short circuit occurs in the system, when the short circuit current flows through the core, the ungrounded end of the aluminum clad or metal shielding layer of the cable will also have a high power frequency induced current Voltage, when the outer sheath insulation of the cable can not bear the over-voltage and is damaged, it will lead to multi-point grounding and form circulation. Therefore, when one end is interconnected for grounding, measures must be taken to limit the over-voltage on the sheath. During installation, special connection and grounding methods shall be adopted at a certain position of the aluminum clad or metal shielding layer according to the different conditions of the line and the principle of economic rationality. At the same time, the sheath protector shall be installed to prevent the cable sheath insulation from being broken down.


According to the requirements of gb50217-1994 code for design of electric power engineering cables, when the metal sheath of single core cable is grounded at only one point, the induced voltage at any point of the metal sheath shall not be more than 50-100v (not more than 50V if safety measures are not taken to contact the metal sheath arbitrarily; not more than 100V if effective measures are taken), And shall be insulated from the ground. If the voltage is greater than the specified voltage, the metal sheath shall be used for sectional insulation or the wiring connected * interconnected after insulation. In order to reduce the induced voltage of single core cable line to adjacent auxiliary cable and communication cable, cross * interconnection wiring shall be adopted as far as possible. In case of short cable length, single point grounding can be adopted. In order to protect the cable sheath insulation, a sheath protector shall be installed at the ungrounded end.


It can be seen that the grounding methods of high-voltage cable lines are as follows:

1. One end of the protective layer is directly grounded, and the other end is grounded through the protective layer - the method can be adopted;

2. The middle point of the protective layer is directly grounded, and the shield at both ends is grounded through the protective layer - common method;

3. Cross connection of protective layer - common method;

4. Cable transposition, metal sheath cross * interconnection - the best grounding method;

5. Grounding at both ends of sheath - not commonly used, only applicable to very short cable and small load cable line.


Contact Information


Xiamen Yesheng Electric Co., Ltd.

Address: No.157 Siming Park, Tongan Industrial Concentration District, Xiamen
Miss Chen:13859997738
Manager Jiang:18106960993
Manager Zhang:13696981893

Xiamen Yesheng Electric Co., Ltd.

主站蜘蛛池模板: 天天操天天爱天天干|日本中文字幕免费在线观看|国产精品久久毛片=a片软件爽爽|国产精品色=av|中文字幕第二十一页|日本护士大口吞精视频网站 | www.亚洲日本|麻豆=av久久一区二区三区|成人国产视频在线观看|日韩精品久久一区|一本到在线观看视频|日本精品一区在线观看 | 久久久久资源|亚洲精品中文字幕在线播放|免费大香伊蕉在人线国产|成人久久久久|精品99人妻|午夜成午夜成年片在线观看 | 二区视频在线|久久99精品久久久野外观看|国产欧美日韩一区二区三区在线观看|久久国产色=av免费看|樱花草在线播放免费中文|亚洲最新版=aV无码中文字幕 | 国产大学生粉嫩无套流白浆|老司机久久99久久精品播放免费|日本国产三级|久久久久久久久久久久久久久久久久=av|欧美日本精品|涩涩91 | 亚洲精品一二三|一本色道久久综合狠狠躁邻居|国产精品乱码一二三区的特点|国产粉嫩高中无套进入|亚洲欧美日韩愉拍自拍|2017男人天堂手机在线 | 影音先锋=aV成人资源站在线播放|中文字幕国产在线天堂|国产极品视频在线观看|亚洲毛片儿|人人性人人性碰国产|成人午夜精品久久久久久久蜜臀 | 欧美一区二区三区视频在线观看|日韩不卡高清|成人午夜视频无码免费视频|一道本道加勒比天天看|欧美成年人视频在线观看|日本中文字幕乱码免费 51久久夜色精品国产水果派解说|国产欧美日韩视频免费|国产96在线亚洲|人妻无码中文字幕免费视频蜜桃|成人=a片产无码免费视频奶头鸭度|亚洲已满18点击进入在线看片 | 成人黄色网址大全|轻点好疼好大好爽视频|欧洲女人牲交性开放视频|377人体粉嫩噜噜噜|伊人热热久久原色播放WWW|在线色网站 国产精品一区二区三区不卡视频|精品国产人成在线|成人久久秘|少妇性l交大片7724com|九色自拍蝌蚪|欧美黄动漫 | 亚洲=av日韩=av无码黑人|亚洲国产成人=aV毛片大全|成人亚洲一区二区三区在线|亚洲成人在线观看视频|超碰97人人干|精品精品精品 | 亚洲wwww|给个毛片网站|欧美日韩伦理在线|日本妈妈黄色片|日韩毛片在线观看|久久精品观看 | 18禁超污无遮挡无码网址极速|国产精品久久久久久久久久三级|91大神暴力调教|成人久久久久久久久|久久久人成影片免费观看|欧美精品成人一区二区三区四区 | 少妇被粗大的猛烈进出|肥大BBwBBWBBw高潮|日韩中文字幕网址|手机看片国产=aV无码|国产精品一区二区免费看|#NAME? | 黄色网址免费在线观看|蜜臀=av夜夜澡人人爽人人桃色|极品少妇XXXXⅩ另类|国产成人一区二区无码不卡在线|亚洲无线视频|九九久久精品国产=aV片国产 | 国产最新网站|亚洲美女一区|亚洲V欧美V国产V在线观看|国产精品乱码久久久久久1区2区|大地影视资源在线观看|国产精品扒开腿做爽爽爽日本无码 | 精品日韩=av一区二区|一区二区三区毛片免费|免费妈妈的朋友|中文字幕日本一道|午夜精品久久久久久毛片|欧美一区二区三区免费在线观看 | 国产成人=av在线播放|亚洲网免费|凸凹视频在线|免费网站h|一区二区三区在线播放|麻豆网视频免费观看 | 办公室强行丝袜秘书啪啪|国产超薄丝袜足底脚交国产|校花被强糟蹋十八禁免费视频|国产一级纯肉体一级毛片|四虎影院网站|成人免费的视频 | 日韩精品无码一本二本三本|亚洲丶国产丶欧美一区二区三区|色在线影院|一级做=a爱片性色毛片|精品国产一区=aV天美传媒|www.日韩视频 | 视频麻豆|91嫩草在线免费观看|久久国产午夜|黑人与日本少妇J=aP=aNESE|免费大片黄在线观看|91色一区二区三区 | 91麻豆国产自产在线观看|曝光无码有码视频专区|丁香激情综合网|国产精品无码午夜免费影院|成年人二级毛片|中文字幕第4页 | 不够善良的我们在线观看|亚洲国产欧美在线成人=a=a=a=a|欧美视频一区在线观看|日日干=av|91亚洲精品久久久|九9热这里真品2 | 亚洲一级毛片免费观看|欧美韩日一区|WWW内射国产在线观看|奇米精品一区二区三区在线观看|99久久亚洲|国产成人精品亚洲线观看 | 久久久久久久久淑女=av国产精品|一区二区视频在线播放|亚洲第一综合网站|操操网=av|久久久久久久九九九九|#NAME? | 日韩网站中文字幕|国产精品入口在线观看|少妇高潮喷水久久久影院|丰满爆乳无码一区二区三区|一区二区日本在线|婷婷777 | 少妇天天干|一本久道久久综合中文字幕|色哟哟国产成人精品免费|国产主播户外勾搭人xx|精品无人区无码乱码毛片国产|亚洲欧美中日精品高清一区二区 | 女教师大荫蒂毛茸茸|无码免费中文字幕视频|CHINESE少妇激情|久久精品国产亚洲=aV麻豆长发|亚洲第一页夜|欧美三级网站在线观看 | 青青草日韩|亚州=aⅤ中文=aⅴ无码=aⅴ|日本免费=a∨片免费|久久久亚洲=aV无码精品一区|热久久亚洲|农村妇女毛片精品久久久 | 精品国产一区二区三区久久久蜜臀|亚洲中文字幕无码一区在线|女同福利|国产一级视频在线观看|久久人妻公开中文字幕|#NAME? 午夜特片|中文久久久久|亚洲精品美女色诱在线播放|大地资源在线观看视频在线|99久久婷婷国产综合精品免费|豪放女大兵免费观看bd | 国产免费一区二区三区在线能观看|久久综合9988久久爱|四虎影院久久|国产精品三区在线观看|日本一上一下爱爱免费|麻豆传媒视频 | 77777五月色婷婷丁香视频|亚洲精品国产偷五月丁香小说|国产一级黄色大片|亚洲成色777777在线观看影院|四虎成人网|四虎院影亚洲永久 | 六月婷婷缴清综合在线|国内精品亚洲|无码成人=a=a=a=a=a毛片专区调教|成年人快播|西西人体44WWW高清大胆|久久久高潮 | 91精品在线观看入口|情人伊人久久综合亚洲|亚洲=aV成人无码网站18禁在线播放|午夜久久福利视频|国产精品午夜福利不卡|午夜黄色录像 | 日本一区三区|欧美成人日韩|中国内地毛片免费高清|影音先锋国产精品|成人一级福利|精品一区二区三区国产 | 国产最新网站|亚洲美女一区|亚洲V欧美V国产V在线观看|国产精品乱码久久久久久1区2区|大地影视资源在线观看|国产精品扒开腿做爽爽爽日本无码 | 免费在线观看黄色大片|综合一区无套内射中文字幕|你好星期六在线免费观看|91探花福利精品国产自产在线|成人18夜夜网深夜福利网|九九影院理论片在线观看一级 | 日韩网站中文字幕|国产精品入口在线观看|少妇高潮喷水久久久影院|丰满爆乳无码一区二区三区|一区二区日本在线|婷婷777 | 精品国产91一区二区三区|55夜色66夜色国产精品|日韩久久久久久|一=a一片一级一片按摩师|91麻豆一区二区|成=av人片在线观看www | www.超碰在线.com|日本在线观看无码不卡V|免费观看日本污污ww网站|一区2区|91福利区|国产精品久久久久久238 | 扒开双腿吃奶呻吟做受视频|日本视频在线观看一区二区三区|国产欧美日韩精品在线一区|国产精品色婷婷亚洲综合看|午夜专区|亚洲人成人毛片无遮挡 | 欧美xxxxx做受vr|2018毛片|久久久人人人婷婷色东京热|黄色=a视频在线观看|在线免费看=av|91无吗 |